Energy functionals, numerical integration and asymptotic equidistribution on the sphere

نویسندگان

  • Steven B. Damelin
  • Peter J. Grabner
چکیده

In this paper, we study the numerical integration of continuous functions on d-dimensional spheres S ⊆ R by equally weighted quadrature rules based at N ≥ 1 points on S which minimize a generalized energy functional. Examples of such points are configurations, which minimize energies for the Riesz kernel ‖x− y‖−s 0 < s ≤ d and logarithmic kernel − log ‖x− y‖. We deduce that extremal point configurations are asymptotically equidistributed on S as N → ∞ and we present explicit rates of convergence for the special case s = d.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution of Fekete Points on the Sphere

Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-...

متن کامل

Equidistribution of the Fekete Points on the Sphere

The Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of the Fekete points in the sphere. The way we proceed is by showing their connection with other array of points, the Marcinkiewicz-Z...

متن کامل

Unsteady Free Convection from a Sphere in a Porous Medium with Variable Surface Temperature

In this paper a transient free convection flow around a sphere with variable surface temperature and embedded in a porous medium has been considered. The temperature of the sphere is suddenly raised and subsequently maintained at values that varies with position on surface. The method of asymptotic expansions is applied for small Rayleigh numbers and then a finite-difference scheme is used to s...

متن کامل

Variational Mesh Adaptation: Isotropyand Equidistribution

We present a new approach for developing more robust and error-oriented mesh adaptation methods. Specifically, assuming that a regular (in cell shape) and uniform (in cell size) computational mesh is used (as is commonly done in computation), we develop a criterion for mesh adaptation based on an error function whose definition is motivated by the analysis of function variation and local error ...

متن کامل

A Comparison of Popular Point Configurations on S2

There are many ways to generate a set of nodes on the sphere for use in a variety of problems in numerical analysis. We present a survey of quickly generated point sets on S2, examine their equidistribution properties, separation, covering, and mesh ratio constants and present a new point set, equal area icosahedral points, with low mesh ratio. We analyze numerically the leading order asymptoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003